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Band Electronic Structure Study of LazCu04 and the 
High-Temperature Superconductor Laz,MxCu04: 
Non-Peierls Nature of the Tetragonal to Orthorhombic 
Distortion of LaZCuO4 and Its Implications 

Sir: 

layers composed of interlinked C u 0 4  moieties, which are con- 
structed from distorted C u 0 6  octahedra 1 (with four short and 

The report by Bednorz and Muller1 of possible high-critical- 
temperature (T,) superconductivity in the Ba-La-Cu-0 system 
touched off intensive studies of the La2-,M,Cu0, phases (M 
= Ba, Ca, Sr; x 5 0.2; y = 0),2-14 eventually leading to the 
discovery by Wu et al.I5 of the first ambient-pressure supercon- 
ductor with T, = 94-98 K, well above liquid-nitrogen temperature 
(77 K).  The structure of the parent compound in this series, 
La2Cu04, is orthorhombic at  room temperatureI6 but becomes 
tetragonal above 533 K.16b The orthorhombic structure of La2- 
C u 0 4  at  room temperature was confirmed in a recent powder 
neutron diffraction study.8 Doping La2Cu04 with an alkaline- 
earth metal, M, makes the resulting phase Laz_,M,CuO4 tet- 
ragonal in structure a t  room temperature, as also shown by the 
powder neutron diffraction study of Lal.85Bao.15Cu048 and the 
single-crystal X-ray diffraction study of La2_,Sr,Cu04 ( x  = 
0.05-0.07).17 Both the pristine and the doped phases contain 
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two long Cu-0 distances) upon sharing their "equatorial" oxygen 
atoms. The C u 0 4  layers of La2-,M,Cu04 and orthorhombic 
LazCu04 are flat and bent as depicted in 2 and 3, respectively, 
and the La3+ and M2+ cations are located between the C u 0 4  
layers. To examine how the dopant M causes high-T, super- 
conductivity in La2,M,Cu04, we have carried out tight-binding 
band calculationsI8 on La2Cu04 and on a single C u 0 4  layer of 
La2_,M,Cu04. Our one-electron band electronic structure cal- 
culations complement the recent self-consistent-field (SCF) band 
s t u d i e ~ ' ~ - ~ ~  on tetragonal La2Cu04. 

As expected from the formal oxidation (La3+)2C~2+(02-)4 and 
the copper coordination of 1, both the S C F  band I 9 q 2 O  and our 
one-electron band calculations show the x2 - y 2  band of tetragonal 
La2Cu04 to be half-filled and do not support the suggestion2' that 
the z2 band of LazCu04 crosses the Fermi level. As far as the 
d-block bands are concerned, results of three-dimensional (3D) 
band calculations on La2Cu04 are essentially identical with those 
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suggested earlier,21s25 therefore, orthorhombic La2Cu04 behaves 
as a metal a t  least above - 100 K, and thus the tetragonal - 
orthorhombic distortion is not a Peierls distortion. In fact, our 
calculations show that the energy of a single C U O ~ ( ~ - ~ ) -  layer 
increases with bending (2 - 3), although the potential energy 
curve is very shallow for small bending. Therefore, the driving 
force for the tetragonal - orthorhombic distortion of LazCu04, 
and that for the layer bending 2 - 3, must originate from in- 
teractions between La3+ and 02- ions (from C u 0 6  octahedra). 
Each La3+ (or a combination of La3+ and M2+ in the doped 
material) is located in a pocket made by four equatorial and four 
axial oxygen atoms of one Cu04+ layer and by one axial oxygen 
of another C U O ~ ~ -  layer, in which the last axial oxygen is closer 
to La3+ than to Cu2+. The interactions between the La3+ and 0" 
ions might lead to a soft phonon responsible for the 
tetragonal - orthorhombic distortion. 

When the tendency for the metal-insulator (MI) transition of 
a metal is reduced in magnitude, the remnant structural instability 
may help produce unusually strong electron-phonon coupling27 
and hence high-T, superconductivity. Consequently, it is crucial 
to know what causes the "MI" transition of La2Cu04 that occurs 
below - 100 K in understanding how the dopant, M, suppresses 
it and induces high- T, superconductivity in La2-xM,Cu04. 
Provided that the MI transition is not a Mott transition2*28 arising 
from electron-electron repulsion, the structural distortion ap- 
propriate for a band gap opening a t  the Fermi level of ortho- 
rhombic La2Cu04 is one that creates two nonequivalent copper 
atoms (in other words, possible "mixed-valence" formation). One 
such distortion is the breathing mode displacement of the equa- 
torial oxygen atoms around each copper a t ~ m . ' ~ , ~ ' ~  Further ex- 
perimental studies on La2Cu04 are necessary to uncover the origin 
of its MI  transition and to help unravel the structural and elec- 
tronic factors governing the high- T, superconductivity in 
La2-,M,Cu04. 
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Figure 1. Two-dimensional Fermi surfaces associated with x2 - y 2  bands 
of the C U O ~ ( ~ " ) -  layers present in La2Cu04 and La2,M,Cu04: (a') the 
flat Cu04& layer of tetragonal La2Cu04; (b) the flat C U O ~ . ~ ~  layer of 
tetragonal La, ,85Mo,, ,C~04;  (c) the bent Cu04& layer of orthorhombic 
La2Cu04. In (a) and (b), X and M refer to ( a * / 2 , 0 )  and ( a * / 2 ,  b * / 2 ) ,  
respectively. Due to the "folded-back" nature of the x2 - y 2  band in 
orthorhombic La2Cu04, which occurs when the unit cell size is doubled, 
the two Fermi surfaces for the lower and the upper parts of this x2 - y 2  
band are combined into one in the extended Brillouin zone in (c), where 
M, A, B, and C refer to ( a * / 2 ,  c * / 2 ) ,  ( a * ,  0 ) ,  (0, c*), and (a* ,  c*). 
respectively. 

of two-dimensional (2D) calculations on a single C u 0 4  layer in 
our one-electron study. Therefore, the d-block bands of 
LaZ-,MxCu04 can be approximated by those of its C u 0 4  layer, 
which will be referred to as the CuO4@,)- layer to indicate the 
number of electrons in the x2 - y2 band (i.e., 1 - x). Shown in 
4a-c are the x2 - y2  band orbitals of a flat Cu04+ layer 2 for the 

4a 4b 4c 

wave vectors I' = (0, 0), X = (a*/2,0), and M = (a* /2 ,  b*/2), 
respectively. The orbitals of the "axial" oxygen of 1 do not have 
the correct symmetry to mix into the x2 - y2 band, which is 
therefore dispersionless along the interlayer direction. The p 
orbitals of the equatorial oxygen atoms make a more effective 
antibonding interaction with the copper x 2  - y z  orbital than do 
the s orbitals of the equatorial oxygen atoms. It is clear from 4 
that the x2 - y2 band dispersion along I' - M would be about 
twice as strong as that along I' - X. This dispersion characteristic 
governs the shape of the Fermi surface (FS)22 associated with the 
x2 - y2 band. 

Shown in Figure l a  is the FS for the half-filled x2 - y 2  band 
of a flat CuOP6 layer 2. The four pieces of this FS are reasonably 
well-nestedz3 by two wave vectors q+ = ( a * / 2 ,  fb*/2) .  This 
nesting is destroyed when electrons are removed from the xz - 
y2 band as illustrated by the FS of a flat C U O ? , ~ ~ -  layer in Figure 
1 b. Such observations led to the s ~ g g e s t i o n ~ ~ ' ~ ~ ~  that the tetragonal - orthorhombic distortion of La2Cu04 that occurs at -533 K'6b 
is a Peierls distortion24 associated with the nesting vector q*, and 
an important role of the dopant M is to suppress the Peierls 
distortion by destroying the FS nesting. 

The measured electrical resistivity of orthorhombic LazCu04 
slowly decreases from room temperature to - 100 K, then slowly 
increases from - 100 to -50 K, and sharply increases a t  lower 
temperatures.8 This resistivity behavior may be interpreted as 
characteristic of a doped semiconductor.8 However, the layer 
bending 2 - 3, and the tetragonal - orthorhombic distortion of 
La2Cu04 a s  well, cannot open a band gap at  the Fermi level due 
to the presence of twofold screw rotation symmetry along the c 
axis. As anticipated, our calculations show that orthorhombic 
La2CuO4 is a 2D metal, the FS of which, shown in Figure IC, is 
reasonably well nested as in the case of tetragonal La2Cu04. As 
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