Volume 26

Number 12

June **17, 1987**

 \lfloor

¹**Inorganic Chemistry**

0 Copyright 1987 by the American Chemical Society

Communications

Band Electronic Structure Study of La₂CuO₄ and the High-Temperature Superconductor La_{2-x}M_xCuO₄: **Non-Peierls Nature of the Tetragonal to Orthorhombic Distortion of La₂CuO₄ and Its Implications**

Sir:

The report by Bednorz and Müller¹ of possible high-criticaltemperature (T_c) superconductivity in the Ba-La-Cu-O system touched off intensive studies of the $La_{2-x}M_xCuO_{4-y}$ phases (M = Ba, Ca, Sr; $x \le 0.2$; $y \approx 0$),²⁻¹⁴ eventually leading to the discovery by Wu et al.¹⁵ of the first ambient-pressure superconductor with $T_c \simeq 94-98$ K, well above liquid-nitrogen temperature **(77 K).** The structure of the parent compound in this series, La_2CuO_4 , is orthorhombic at room temperature¹⁶ but becomes tetragonal above 533 K.^{16b} The orthorhombic structure of La₂- $CuO₄$ at room temperature was confirmed in a recent powder neutron diffraction study.⁸ Doping La_2CuO_4 with an alkalineearth metal, M, makes the resulting phase $La_{2-x}M_xCuO_4$ tetragonal in structure at room temperature, as also shown by the powder neutron diffraction study of $La_{1.85}Ba_{0.15}CuO₄⁸$ and the single-crystal X-ray diffraction study of $\text{La}_{2-x}\text{Sr}_x\text{CuO}_4$ (x \simeq **0.05-0.07).17** Both the pristine and the doped phases contain

- (1) Bednorz, J. G.; Müller, K. A. Z. Phys. B: Condens. Matter 1986, 64, 189.
- (2) Bednorz, J. G.; Takashige, M.; Muller, K. A. *Europhys. Lett.* **1987.3,** 379.
- (3) Takagi, H.; Uchida, **S.;** Kitazawa, K.; Tanaka, S. *Jpn. J. Appl. Phys. Part* **2 1987, 26,** L123.
- (4) Uchida, S.; Takagi, H.; Kitazawa, K.; Tanaka, **S.** *Jpn. J. Appl. Pfiys., Part 2* **1987**, 26, L1.
- **(5)** Cava, R. J.; van Dover, R. B.; Bartlogg, B.; Rietmann, E. A. *Phys. Rev. Lett.* **1987,** *58,* 408.
- (6) Chu, C. W.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J.; Wang, **Y. Q.** *Phys. Rev. Lett.* **1987,** *58,* 405.
- (7) Chu, C. W.; Hor, P. H.; Meng, R. L.; Gao, L.; Huang, Z. J. *Science (Washington,* D.C.) **1987,** *235,* 567.
- (8) Jorgensen, J. D.; Schiittler, H.-B.; Hinks, D. G.; Capone, D. W.; Zhang, K.; Brodsky, M. B.; Scalapino, D. J. *Phys. Rev. Lett.* **1987,** *58,* 1024.
- (9) Tarascon, J. M.; Green, L. H.; McKinnon, W. R.; Hull, G. W.; Gaballe, T. H. *Science (Washington, DE.)* **1987,** *235,* 1373.
- (10) Bonne, D. A.; Greedan, J. E.; Stager, C. V.; Timusk, T., submitted for publication *Solid State Commun.*
- (11) Zhao, Z.; Chen, L.; Cui, C.; Huang, Y.; Liu, J.; Chen, G.; Li, **S.;** Guo, **S.;** He, *Y. Kexue Tongbao (Chin. Ed.),* in press.
- (12) Kishio, K.; Kitazawa, K.; Kanbe, **S.;** Yasuda, I.; Sugii, N.; Takagi, H.; Uchida, **S.-I.;** Fueki, K.; Tanaka, S. *Chem. Lett.,* in press.
- (13) Kanbe, **S.;** Kishio, K.; Kitazawa, K.; Fueki, K.; Takagi, H.; Tanaka, **S.,** submitted for publication *Chem. Lett.*
- (14) Kishio, K.; Kitazawa, K.; Sugii, N.; Kanbe, **S.;** Fueki, K.; Takagi, H.;
- Tanaka, S., submitted for publication *Chem. Lett.*
(15) Wu, M. K.; Ashburn, J. R.; Torng, C. J.; Hor, P. H.; Meng, R. L.; Gao,
L.; Huang, Z. J.; Wang, Y. Q.; Chu, C. W. Phys. Rev. Lett. 1987, 58, 908.
- (16) (a) Grande, B.; Miiller-Buschbaum, Hk.; Schweizer, M. *Z. Anorg. Allg. Chem.* **1977, 424,** 120. (b) Longo, J. M.; Raccah, P. M. *J. Solid State Chem.* **1973,6,** 526.

layers composed of interlinked $CuO₄$ moieties, which are constructed from distorted CuO₆ octahedra 1 (with four short and

two long Cu-0 distances) upon sharing their "equatorial" oxygen atoms. The CuO₄ layers of $La_{2-x}M_xCuO_4$ and orthorhombic La_2CuO_4 are flat and bent as depicted in 2 and 3, respectively, and the La³⁺ and M²⁺ cations are located between the CuO₄ layers. To examine how the dopant M causes high- T_c superconductivity in $\text{La}_{2-x}\text{M}_{x}\text{CuO}_4$, we have carried out tight-binding band calculations¹⁸ on La_2CuO_4 and on a single CuO_4 layer of $La_{2-x}M_xCuO_4$. Our one-electron band electronic structure calculations complement the recent self-consistent-field (SCF) band studies^{19,20} on tetragonal $La₂CuO₄$.

As expected from the formal oxidation $(La^{3+})_2Cu^{2+}(O^2)_{4}$ and the copper coordination of 1, both the SCF band ^{19,20} and our one-electron band calculations show the $x^2 - y^2$ band of tetragonal La₂CuO₄ to be half-filled and do not support the suggestion²¹ that the z^2 band of La_2CuO_4 crosses the Fermi level. As far as the d-block bands are concerned, results of three-dimensional (3D) band calculations on La_2CuO_4 are essentially identical with those

- (18) (a) Whangbo, M.-H.; Hoffmann, R. *J. Am. Chem. SOC.* **1978,** *100,* 6093. (b) Whangbo, M.-H.; Schneemeyer, L. F. Inorg. *Cfiem.* **1986, 25,** 2424. (c) The atomic parameters employed in constructing the extended Hückel²⁹ Hamiltonian are as follows: The valence shell ionization potential H_{ii} (eV) and the exponent ζ_i of the Slater type atomic orbital χ_i are respectively -32.3 and 2.275 for O 2s, -14.8 and 2.275 for 0 2p, -11.4 and 2.2 for Cu 4s, -6.06 and 2.2 for Cu 4p, -7.67 and 2.2 for Cu 4p, -7.67 and 2.14 for La 6s, and -5.01 and 2.08 for La 6p.³⁰ The d orbitals of La and Cu are represented by a linear combination of two Slater type orbitals of exponents ζ_i and ζ'_i with weighting coefficients c_i and c'_i , respectively. The H_{ii} (eV), ζ_i , c_i , $\zeta_i t'$, and c_i values are respectively -14.0 , 5.95, 0.5933, 2.30, and 0.5744 for Cu 3d and -8.21, 3.78, 0.77656, 1.381, and 0.4586 for La 5d.³⁰ The off-diagonal Hamilto formula.³¹
Mattheiss, L. F. Phys. Rev. Lett. **1987**, 58, 1028.
-
- (19) Mattheiss, L. F. *Phys. Rev. Lett.* **198**7, 58, 1028.
(20) Yu, J. J.; Freeman, A. J.; Xu, J.-H. *Phys. Rev. Lett.* **1987**, 58, 1035.
(21) Singh, K. K.; Ganguly, P.; Goodenough, J. B. *J. Solid State Chem.*
1984, 52,

⁽¹⁷⁾ Wang, H. H.; Geiser, U.; Thorn, R. J.; Carlson, K. D.; Beno, M. A.; Monaghan, M. R.; Allen, T. J.; Proksch, R. B.; Stupka, D. L.; Kwok, W. K.; Crabtree, G. W.; Williams, J. M. Inorg. Chem. 1987, 26, 1190.

Figure 1. Two-dimensional Fermi surfaces associated with $x^2 - y^2$ bands of the CuO₄(\rm{e}^{-x})⁻ layers present in La₂CuO₄ and La_{2-x}M_xCuO₄: (a) the flat CuO₄[&] layer of tetragonal La₂CuO₄; (b) the flat CuO₄^{5.85–} layer of tetragonal La_{1,85}M_{0,15}CuO₄; (c) the bent CuO₄⁶⁻ layer of orthorhombic La₂CuO₄. In (a) and (b), X and M refer to $(a^*/2, 0)$ and $(a^*/2, b^*/2)$, respectively. Due to the "folded-back" nature of the $x^2 - y^2$ band in orthorhombic La_2CuO_4 , which occurs when the unit cell size is doubled, the two Fermi surfaces for the lower and the upper parts of this $x^2 - y^2$ band are combined into one in the extended Brillouin zone in (c), where **M, A, B, and C refer to** $(a^*/2, c^*/2)$ **,** $(a^*, 0)$ **,** $(0, c^*)$ **, and** (a^*, c^*) **.** respectively.

of two-dimensional (2D) calculations on a single $CuO₄$ layer in our one-electron study. Therefore, the d-block bands of $La_{2-x}M_xCuO_4$ can be approximated by those of its CuO₄ layer, which will be referred to as the CuO₄^{(6-x)-} layer to indicate the number of electrons in the $x^2 - y^2$ band (i.e., $1 - x$). Shown in **4a-c** are the $x^2 - y^2$ band orbitals of a flat CuO_4^6 - layer 2 for the

wave vectors $\Gamma = (0, 0)$, $X = (a^*/2, 0)$, and $M = (a^*/2, b^*/2)$, respectively. The orbitals of the "axial" oxygen of **1** do not have the correct symmetry to mix into the $x^2 - y^2$ band, which is therefore dispersionless along the interlayer direction. The p orbitals of the equatorial oxygen atoms make a more effective antibonding interaction with the copper $x^2 - y^2$ orbital than do the **s** orbitals of the equatorial oxygen atoms. It is clear from **4** that the $x^2 - y^2$ band dispersion along $\Gamma \rightarrow M$ would be about twice as strong as that along $\Gamma \rightarrow X$. This dispersion characteristic governs the shape of the Fermi surface $(FS)^{22}$ associated with the $x^2 - y^2$ band.

Shown in Figure 1a is the FS for the half-filled $x^2 - y^2$ band of a flat CuO₄⁶⁻ layer 2. The four pieces of this FS are reasonably well-nested²³ by two wave vectors $\mathbf{q}_{\pm} = (a^*/2, \pm b^*/2)$. This nesting is destroyed when electrons are removed from the x^2 y^2 band as illustrated by the **FS** of a flat CuO₄^{5,85–} layer in Figure 1b. Such observations led to the suggestion^{8,19,20} that the tetragonal \rightarrow orthorhombic distortion of La₂CuO₄ that occurs at \sim 533 K is a Peierls distortion²⁴ associated with the nesting vector q_{\pm} , and an important role of the dopant M is to suppress the Peierls distortion by destroying the FS nesting.

The measured electrical resistivity of orthorhombic La_2CuO_4 slowly decreases from room temperature to \sim 100 K, then slowly increases from \sim 100 to \sim 50 K, and sharply increases at lower temperatures.8 This resistivity behavior may be interpreted as characteristic of a doped semiconductor.8 However, the layer temperatures.⁸ This resistivity behavior may be interpreted as
characteristic of a doped semiconductor.⁸ However, the layer
bending $2 \rightarrow 3$, and the tetragonal \rightarrow orthorhombic distortion of La_2CuO_4 as well, cannot open a band gap at the Fermi level due to the presence of twofold screw rotation symmetry along the *c* axis. As anticipated, our calculations show that orthorhombic La_2CuO_4 is a 2D metal, the FS of which, shown in Figure 1c, is reasonably well nested as in the case of tetragonal La_2CuO_4 . As

suggested earlier,^{21,25} therefore, orthorhombic La_2CuO_4 behaves suggested earlier,^{21,25} therefore, orthorhombic La_2CuO_4 behaves
as a metal at least above \sim 100 K, and thus the tetragonal \rightarrow
orthorhombic distortion is not a Peierls distortion. In fact, our orthorhombic distortion is not a Peierls distortion. In fact, our calculations show that the energy of a single $CuO₄^{(6-x)-}$ layer orthorhombic distortion is not a Peierls distortion. In fact, our
calculations show that the energy of a single CuO₄(6-x)- layer
increases with bending (2 - 3), although the potential energy curve is very shallow for small bending. Therefore, the driving increases with bending $(2 \rightarrow 3)$, although the potential energy
curve is very shallow for small bending. Therefore, the driving
force for the tetragonal \rightarrow orthorhombic distortion of La₂CuO₄, and that for the layer bending $2 \rightarrow 3$, must originate from interactions between La^{3+} and O^{2-} ions (from CuO₆ octahedra). Each La^{3+} (or a combination of La^{3+} and M^{2+} in the doped material) is located in a pocket made by four equatorial and four axial oxygen atoms of one $CuO₄$ ⁶⁻ layer and by one axial oxygen of another $CuO₄⁶⁻$ layer, in which the last axial oxygen is closer to La³⁺ than to Cu^{2+} . The interactions between the La³⁺ and O²⁻ ions might lead to a soft phonon mode^{8,26} responsible for the to La³¹ than to Cu²⁴. The interactions b
ions might lead to a soft phonon mode
tetragonal \rightarrow orthorhombic distortion.

When the tendency for the metal-insulator (MI) transition of a metal is **reduced** in magnitude, the remnant structural instability may help produce unusually strong electron-phonon coupling^{27} and hence high- T_c superconductivity. Consequently, it is crucial to know what causes the "MI" transition of La_2CuO_4 that occurs below \sim 100 K in understanding how the dopant, M, suppresses it and induces high- T_c superconductivity in $La_{2-x}M_xCuO_4$. Provided that the MI transition is not a Mott transition^{246,28} arising from electron-electron repulsion, the structural distortion appropriate for a band gap opening at the Fermi level of orthorhombic La_2CuO_4 is one that creates two nonequivalent copper atoms (in other words, possible "mixed-valence" formation). One such distortion is the breathing mode displacement of the equatorial oxygen atoms around each copper atom.^{19,27c} Further experimental studies on La_2CuO_4 are necessary to uncover the origin of its MI transition and to help unravel the structural and electronic factors governing the high- T_c superconductivity in $La_{2-x}M$, CuO_4 .

Acknowledgment. Work at North Carolina State University and Argonne National Laboratory were supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences, under Grant DE-FG05-86-ER45259 and under Contract W31-109-ENG-38, respectively. We express our appreciation for computing time made available by DOE on the ER-Cray X-MP computer. We wish to thank Dr. L. F. Mattheiss, Prof. **A.** J. Freeman, Dr. **J.** D. Jorgensen, Dr. D. W. Capone, and Dr. D. G. Hinks for sending their preprints prior to publication.

-
- (25) Ganguly, P.; Rao, C. N. R. *Mater. Res. Bull.* 1987, 8, 405.
(26) Cochran, W. *The Dynamics of Atoms in Crystals*; Edward Arnold: London, **1973;** pp **126-138.**
- **(27)** (a) Matthias, B. T., **In** *Superconductivity;* Wallace, P. R., Ed.; Gordon and Breach: New York, **1969; Vol. 1 p 227.** (b) Huh, J. K.; Blauger, R. D. **In** Low *Temperature Physics-LTl3;* Timmerhaus, K. D., *0-* Sullivan, W. J.; Hammel, E. **F.,** Eds.; Plenum: New York, **1974; Vol.** 3, p 3. (c) Mattheiss, L. F.; Hamann, D. R. *Phys. Rev. B: Condens.*
Matter 1983, 28, 4227. (d) Whangbo, M.-H.; Williams, J. M.; Schultz, A. J.; Emge, T. J.; Beno, M. A. J. Am. Chem. Soc. 1987, 109, 90.
- **(28)** (a) Mott, N. F. *Metal-Insulator Transitions;* Barnes and Noble: New York, **1977.** (b) Brandow, B. H. *Adv. Phys.* **1977,26651.** (c) Hubbard, J. Proc. R. Soc. London, A 1963, 276, 238. (d) Sason, S. S.;
Whangbo, M.-H. Inorg. Chem. 1986, 25, 1201.
(29) Hoffmann, R. J. Chem. Phys. 1963, 13, 1397.
-
-
- (30) Alvarez, S., private communication, 1985.
(31) Ammeter, J. H.; Bürgi, H. B.; Thibeault, J. C.; Hoffmann, R. J. Am.
Chem. Soc. 1978, 100, 3686.

Department of Chemistry **Myung-Hwan Whangbo*** North Carolina State University Raleigh, North Carolina 27695-8204

Argonne National Laboratory

Argonne, Illinois 60439

Received March 6, I987

⁽²²⁾ The Fermi surface of a partially filled band is the boundary between the occupied and the unoccupied wave vector regions.
When a piece of a Fermi surface is related to another piece by a

⁽²³⁾ When a piece of a Fermi surface is related to another piece by a translation of wave vector **q,** the two pieces are said to be nested by **q.**

^{(24) (}a) Peierls, R. E. *Quantum Theory of Solids*; Oxford University Press:
London, 1955; p 108. (b) Berlinsky, A. J. Contemp. Phys. 1976, 17.
331. (c) Whangbo, M.-H. Acc. Chem. Res. 1983, 16, 95. (d) Moret,
R.; Pouget, *Quasi-One-DimensionaI Structures;* **Rouxel,** J., Ed.; Reidel: Dordrecht, The Netherlands, **1986;** p 87.